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These formulas are quite similar to those obtained for
evacuated cavities, and most of the comments made
about the latter can be duplicated here, for example,
that the electric currents should be parallel to the lines
of the electric field to efficiently excite any given mode.
We do not insist on this aspect, but notice that the
formulas of (20) provide a purely formal solution of our
problem. There remains the formidable task of actually
determining the eigenvectors for any given geometry
and disposition of gyrotropic material (in certain cases
one might be satisfied with the structure of a single mode
if operation at a resonant frequency is considered). This
problem is not within the province of the present paper,
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and we shall only mention that cylindrical structures in
the form of terminated waveguides are those for which
the analysis can progress most satisfactorily.®12
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Summary-—An unknown load impedance terminating a lossy two-
port junction can be calculated if the input impedance and junction
parameters are known. It is to be shown that there exists a linear
relationship, dependent upon two calibration constants, between the
input reflection coefficient and a modified reflection coefficient of
the load. Applying the linear transformation to the junction input
impedance permits evaluation of the unknown load impedance. Cali~
bration is accomplished by terminating the transmission line in at
least three different reactances and measuring the corresponding
input reflection coefficients. These data plot into the usual circular
configuration on a Smith chart from which the necessary calibration
data is obtained. When several load reactances are used, the calibra-
tion accuracy can be considerably increased, since the averaging ad-
vantage of plotting a mean straight line is utilized. Furthermore,
once the junction has been calibrated, its equivalent T-network im-
pedances and scattering coefficients may be found.

I. INTRODUCTION

N UNKNOWN load impedance which terminates a
l two-port junction can be calculated if the input
impedance and parameters of the junction are

* Received by the PGMTT, January 25, 1961; revised manuscript
received, August 21, 1961. The research reported in this paper was
sponsored by the Electronics Res. Directorate of the U. S. AF Cam-
bridge Res. Ctr., Air Res. and Dev. Command, under Contract AF
19(604)-4556, which was awarded to the Engrg. Experimeut Station,
University of Colorado, Boulder.

+ Engineering Experiment Station, University of Colorado,
Beulder, Colo.; on leave of absence from University of Illinois, Ur-
bana, I1l., during the summer of 1960.

1 Engineering Experiment Station, University of Colorado. Boul-
der, Colo.; on leave of absence from Indiana Technical College, Fort
Wayne, Ind.

known. Several methods are currently available for de-
termining the network paraineters, such as the three-
point method, canonical method, and the scattering-
matrix method.'—1¢
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This paper describes a procedure for finding the load
impedance based on a graphical method (as are most
other calibration procedures), but it avoids cumber-
some complex number manipulations, the restriction
that the junction be lossless, and large probable calibra-
tion error caused by insufficient data. When it is prop-
erly applied, it provides a means of evaluating load im-
pedances directly, rapidly, and accurately.

It is to be shown that for a two-port junction there
exists a linear relationship between the input reflec-
tion coefficient I';; and a modified load reflection-
coefficient I'y’ (yet to be defined). This relationship
contains two calibration constants which are deter-
mined by means of a graphical calibration procedure;
then applying this linear relationship to the network
input impedance measurement permits evaluating the
load impedance. The theory of this technique is de-
scribed in the following.

II. GenerAL Tarory!

The reciprocal, passive, two-port junction can be
represented by the T-configuration of Fig. 1. With a
load Z; connected, the input impedance seen by a
generator at port 1 is the usual

ALY

Zin = - o
Zoy+ Z1,

Zl]

(D

January

Observe that (2) can be rearranged as

AT —|
Zu—2Zon Zu—Zn Z1t — Zo?
T — - : | 3)
le_,_ZOl Z11+Z01 Zl?
I_ 2 — ——+ZLJ
Zu+Zn

The quantity Zss—Z15*/(Z11+Zo1) in the denominator of
(3), from comparison with (1), is the impedance look-
ing into port 2 when the generator at port 1 is replaced
by the matched load Zy. This quantity is a fixed con-
stant which, after normalization by Zg, we designate
'(].Sls

1 <Z AT > L @
21 = — 22 — T — = ¥ X1.
Zos Zutzy) PTIT

These parameters 71, x; will appear later as the “cali-
bration constants” mentioned before. Now define a nor-
malized load impedance g, =Z21/Z¢ =rr+jx5. so that
substitution of 2; and z; into (3) and normalizing all
the remaining terms by Zy; yields

— 22192
T = " 1 = Zn:r i e 1)7; . )
4 2 7 X
11 11 1+ i +]_ L X1
71 71

loaded section of line

)
[#]

Fig. 1—Notation pertaining to a reciprocal, passive,
two-port junction.

From the definition of reflection coefficient, one may
express an input ['y, for the T-network as'?

VATS
Zow+ 2, ————
Zln - ZOI le - ZOl le - ZOl
Mo = 2 " Zniz Z - @
in 01 1L 01 12
Lzm + 27— —-—J
ZII+ ZOl

11 The general theory has been discussed by R. Mittra, “Imped-
ance measurements through a discontinuity in a transmisston line,”
1955 IRE NaTtioNnaL CONVENTION RECORD, vol. 3, pt. 8, pp. 85-91.
See also “Impedance and Pattern Studies of Disk-Based Monopoles
over Lossy Ground Survaces,” Dept. of Elec. Engrg., Univ. of Colo-
rado, Boulder, Scientific Rept. No. ERD-TN-60-763, AF Res. Div.
Contract No. AF 19(604)-4556, pp. 57-78: July, 1960.

12 7o and Zg denote the characteristic impedances of the trans-
mission lines connected to the input reference plane 1-2 and output
reference plane 3-4 respectively as in Fig. 1.

Where 211:Z11/Z()1 and 2122:Z122/Z()1Z02. One ShOuld
note that we have normalized the input impedance to
the characteristic impedance of the input port Zy, while
the load impedance Z; is normalized to the character-
istic impedance of the output port Zps.

Now simplify by making the substitutions

fo xr -+ X1
YL, = xL’ = — ZL, = 7’[,’ +].X'LI. (6)
71 81

Observe that we have defined a modified load im-
pedance z;’ which is related to the actual load im-
pedance zz through parameters 7, x;. Correspondingly,
define a “modified” load reflection coefficient I' .’ related

% All normalized quantities appear in lower case letters.
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to z7/ in the usual way:
ZL, —1
r) = : Q)
ZL, + 1

Finally, substituting (7) into (5) and letting

211 1 B
= a
gn+ 1 .
and
3 1[ — 319" :] _ 1_77 (8)
g+ 1 (’5112 - 1)7’1

where d@ and b are complex network constants, puts (5)
in the form

Tin — @ =51 — T.). 9

Eq. (9) is a linear relationship between I'i, and the
output transformed reflection coefficient I'z’. The entire
procedure for network-load impedance determination is
based upon this relationship, and is described in the
next sections.
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sliding short which connects directly onto the output
port. Assuming no losses in the shorted line, we have
that this load reactance is the normalized g, =7 tan kd,
where d is the shorted transmission line length. An ac-
tual plot of the I'i,-circle can then be made by means
of a suitable impedance meter placed ahead of the net-
work input terminals. In this manner, the circle typified
in Fig. 2(a) is plotted point-for-point as the known
load-reactance values are changed, with the center of
the circle located at 4.

The corresponding modified load reflection coef-
ficient I';” on the other hand will obviously plot on the
periphery of the 'z’ plane [shown by circle D'E’'B’ in
Fig. 2(b)], since from relation (6), the modified load
resistance 71" =r./r1 is zero when the load is purely re-
active. From the properties of a linear transformation!
and from the known input impedance measurements, a
point-to-point correspondence of the two circular loci
of I'i, and I'.' is established experimentally. Hence, dis-
tance .1’D’ (to point +1) in Fig. 2(b) corresponds to a
reactance termination provided by a quarter-wave

(a)

(b)

Fig. 2—T'ypical linear transformation of points in I'j,
and I'ys planes. (a) I'y, plane. (b) I'y plane.

T11. PriNcIPLES OF NETWORK CALIBRATION

We shall now demonstrate how the desired calibra-
tion measurements are made on the network, and how
the unknown load impedance is then found. This
straightforward procedure is based on the linearity of
(9) and on the load impedance transformation rela-
tions (6). Some of the well-known properties of the
Smith chart are repeated here in connection with the
specific measurements involved in this procedure.

Suppose we consider two separate Smith charts on
which are plotted the two reflection coefficients, I',, of
(2) and 'y’ of (7), which correspond to a given termi-
nated junction. These are shown typically in Fig. 2.
Fig. 2(a) represents the usual circular variation!® of
T'in (shown by circle DEB) obtainable when the output
terminals are loaded with at least three values of react-
ance. These load reactances can be provided physically
through the use of a uniform transraission line with a

shorted line for which x;/ = « from (6), since x;,= =,
and so I'y = +1. Then input-impedance measurements
will provide a corresponding point D in the I'iy-plane;
this establishes distance OD in Fig. 2(a). The proce-
dure is repeated with other load-reactance values to
obtain other point-pairs and establish the circular loci
of Fig. 2(a) with as much detail as may be desired. For
every I'y/ on the periphery of the I'/’-circle, there
corresponds a certain xz’ and hence an x; from (6).
Thus, I'7’ is related to x5 through the still unknown
calibration constants 7; and x;. These are easily found
by first establishing two independent equations in-
volving unknowns 7 and xi; e.g., refer to the expression
for x." in (6) again, and denote by the symbols x 1o’ and
xz1/ as those xi’-values which correspond to load re-

14 The porperties of linear transformation are well known. It is an
expansion and rotation followed by a translation. These operations

leave all angles and ratios of distances invariant. See Appendix I for
proof.
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actances of x;,=0 and x;=1, respectively. Then (6)
yields

; X1 , 1 + X1
21 = — and a1/ = .
71 71

(10)

Note that these two choices correspond to a short cir-
cuit placed first at the output port, and then moved one-
eighth wavelength from the output. The input reflec-

The cotangent method may be developed with ref-
erence to Fig. 3. Let 3-4 represent the output port
plane, while 1-2 represents the position of the input
standing-wave voltage minimum when the output is
shorted at 3-4. Now connect a quarter-wavelength
line extension to 3-4 so that the short is then located at
3’4’ and such that the input voltage minimum has
shifted toward the load to 1’-2’. L.et d; be the standing
wave shift from 1’-2" measured positive toward the
generator.

minimum position

input reference when

output 1s output reference

plane /shoried at 3-4 lane
\ e—d]—! K <—d2‘[

T I lossy 3 3
2 o junction 4 g
A
—2—

Fig. 3—Location of references and measurement of
distances used in the cotangent method.

tion coefficients I';, are then measured with these reac-
tive loads in place, and plot typically as B and E in
Fig. 2(a). Transformation to B” and £’ in the I'y’ plane
follows from the linearity property. This permits the
desired values of xz," and xz:" to be read and inserted
into (10) to vield the required xi, 1 values, completing
the network calibration. .

Suppose some unknown load impedance z; is now
connected to the junction, and an impedance meter is
used to measure the input port reflection coefficient
I'in which appears as point € in Fig. 2(a). This point
maps into the I';’ plane as point C’ in Fig. 2(b) (found
from the equality of anles C4D and C’4'D’ and from
equal magnifications C4/D4d and C'4’/D’A’). But
point C" also identifies an impedance z;" (corresponding
to that T';’); finally, 2z is found from this z;" by
means of (6) and by use of the known 7i, x; values de-
termined from the method already described.

IV. TuEoryY or THE COTANGENT METHOD
FOR NETWORK CALIBRATION

The calibration method for finding 7y, x1 of a network
as described in Section II1 involves at least three meas-
urements of input impedance (or reflection coefficient)
and corresponding measurements of lengths d of shorted
transmission lines, which may offer contributions to
errors in the evaluation of r; and x. It is now to be
shown that one of the greatest advantages of the im-
pedance transformation method is that significant
errors may be minimized through a plot of x;" vs xz,
which is seen to be a straight line from (6). With the
output consecutively terminated in a sufficient number
of shorted transmission-line sections, a mean straight
line drawn through the experimental points serves to
eliminate the largest errors which are likely to occur.
We shall now elaborate on this technique.

Recall that when the short is placed at 3'-4,
1y =(xp+x)/ri=» and the corresponding input re-
flection coefficient establishes point D on the I'i, plane
of Fig. 2(a). Now vary distance d, measured from
3’-4’ by connecting several shorted transmission lines
successively to 3-4, such that —\/4 <d:<A/4. The cor-
responding I'i, is measured for each ds so that the cir-
cular T';, plot of Fig. 2(a) may be obtained.

Now from the discussion of Section III, anyv angle
EAD in the T';, plane transforms into angle £7.4’D’ in
the I'; plane of Fig. 2 (b). Let us define an equivalent
distance d, (Fig. 2) such that angle EAD=2 kd{. The
I'y’ plane reference is taken at I'y/= 41, so x;" =cot
kd) and xp=cot kd. Substituting x;’ and x. into (6)
vields

1 a1
col kdy = — cot kd2 + — - (11)
71 1
The desired calibration constants 7y, x; can evidently
be found from (11) by noting that the slope of the line is
1/r, while the ordinate intercept is —x;. We note in
passing that when the junction is lossless, then di/ =dj,
equation (11) becomes the same as that which was pro-
posed by Oliver® for lossless structures.

A sample plot of data and calibration curve for a
typical coaxial line junction is shown in Figs. 4and 5. A
sample input impedance measurement was plotted as
point F on Fig. 4. The radius of the T';, circle is 0.908,
the angle FA D measures 60.8°, and line 4 F has a length
of 0.368, so

—  AF ___
AF = — = A'D" = 0391 10 &,
4D

The modified load impedance is read out as 2,/ =1.10
+70.90 and, by applyving (6), we find r;,=0.844 and
xr,=0.316.
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V. GENERAL DiscussioN oF CALIBRATION PROCEDURE

The measurement procedure described involves meas-
urement of the input reflection coefficient for various
values of output terminating reactace obtainable by
terminating the port 3-4 with a transmission line
equipped with a sliding short. The input reflection
coefficient can usually be measured with a slotted line;
however, other methods may be employed depending
upon the accuracy desired, the nature of the magnitude
of I'in, and the operating wavelength.

A minimum of three different terminating reactances
are needed to locate the circle in the I'i, plane. If the
calibration constants are to be determined by (10),
these three reactances correspond to short-circuited
line lengths d, of zero, A /8 and N /4 (or terminating
impedances of j0, j1 and j«), respectively. Of course,
more points would provide more accuracy for deter-
mining the center of the I'i, circle. If the cotangent
method of evaluating the calibration constants is to be
used, then several points should be obtained so that a
mean straight line can be drawn.

After collecting enough data to plot the T'}, c1rc1e to
the desired accuracy, one can then locate its center 4,
shown typically in Fig. 2(a). The distance AD corre-
sponds to A’D’ in the T';’ plane, and any I';” may then
be determined by the relations

AC  AC
AD A'D

and angle CAD = angle C'A’'D’.

1t should be mentioned at this point that if the z matrix
18 positive real,” I'), will always lie within the circle DED
and the junction will be passive.

AprrPENDIX [

ProoF oF LINEAR TRANSFORMATION BETwWEEN T';,
AND I';” PLANES

The complex constants defined by (8) are easily
representable as vectors which are shown in Fig. 6.
From (9), when I';)’=+41, T'isn=a and when I';)’=0,
Iin=ad4b so a equals vector OD and b equals vector
DA,

The linear transformation property may be seen by
letting I, take on any value such that T';, takes on a
corresponding value, say vector OF. Eq. (9) may be
rearranged to read (a+8)—T,,=5I";". It follows then
that vector FA =8I";’, and 4 maps into A’ by merely
letting I'z/=0. Also, taking a ratio of the two vectors
oT';’ and b yields

br.’

=T

(12)

FA
b DA

15 The necessary and sufficient condition for positive reality is that
Ry Rps — R13 >0 where Ry;, Ry, and Rz are the real parts of Zy1, Za, and
and Z.z, respectively. See E. A. Guillemin, “Communication Net-
woré{s, John Wiley and Sons, Inc., New York, N. Y., vol. 2, p. 216;
1935.

January

N
N
9‘,

(a) (b)

Fig. 6—T'i, plane showing complex constants &
and b. (a) Iy, plane. (b) T'z- plane.

Thus, the angle FAD=2kdi=angle F'4’D’ and the
magnitude of I'y’ is found through equal magnification
of the radii

F'A'
— (13)
The validity of the proposed point-for-point trans-
formation is thereby established.

AprPENDIX 11

TRANSFORMATION METHOD RELATIONSHIP TO NETWORK
IMPEDANCES AND SCATTERING COEFFICIENTS

It may be convenient to use the transformation pro-
cedure outlined in the text to determine the impedance
constants of the T-network shown in Fig. 1 or the com-
monly used scattering coefficients, both of which com-
pletely describe the junction. These are easily found
through the use of the constants & and & defined by
(8) and the calibration constant z;=7;+jx; (see Ap-
pendix I).

A. Evaluation of the Network Impedance
Using the first of (8) it is apparent that

Z11 1 + a
Z211 = —— = n (14)
01 1—a
The complex constant & may be written as
. -7 Z 2
5 — 01( 12 > . (15)
Zoars \Zu + Zo:

After eliminating Z.%/(Zyu+Zo) from (4) with (15) and
subsituting (14) we find .

ZQQ 2771’1
Z9g = —— = 31 — T (16)

02 1—-a

Finally, 21, may be found by substituting (14) and (16)
into (4) yielding

2122 —457’1
ZOQZ()I (1 - (1)2

2

212
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E. Evaluation of the Scattering Coefficients

The scattering coefficients are often needed to de-
scribe the characteristics of a network. For our discus-
sion we shall assume that the junction is reciprocal as
before, 1'.6., 5122521.

To find the forward reflection coefficient Si; we note
that when I',=0, then rz=1 and ¢z =0. Then, from
(6) and (7),

ZL,_l 1—1’1+j.U1

T, = - = . (18)
zr/ + 1 1+7+ju
Zl*—l
T a1

where z* denotes the complex conjugate of z. Sub-
stituting (18) into (9) and rearranging, we obtain

27)7’1
a1

T'n=2a + (19)

but recall that the input reflection coefficient may also
be expressed in terms of the scattering coefficients of
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the network, or

S122T'g,

Py =8Sn+——7—- (20)
1 — Sal'y
Letting I' . =0, we see that
2571

Su=4d . (21)

21 + 1

It follows from (4) and the above discussion that
S = 21 (22)
22 = 1

The transmission coefficient Sy may be found by
observing that when I'p=-41 then I'y/=41 and
I'i,=a, or

Sya?
Tin = Su + 1___:3:;; . (23)
Substituting (21) and (22) into (23) yields
Sut = _:41)1'1 ) (29)
(214 1)




