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These formulas are quite similar- to those obtained for

evacuated cavities, and most of the conlments made

about the latter can be duplicated here, for example,

that the electric currents should be parallel to the lines

of the electric field to efficiently excite any given mode.

W’e do not insist on this aspect, but notice that the

formulas of (20) provide a pLu-ely formal solution of our

problem. There remains the formidable task of actually

determining the eigenvectors for any given geometry

and disposition of g~rotropic materia 1 (in certain cases

one might be satisfied with the structure of a single mode

if operation at a resonant frequency is consiclerecl). This

problem is not within the province of the present paper,

and we shall only mention that cylindrical structures in

the form of terminated waveguides are those for which

the analysis can progress most satisfactorily y. ‘–12
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An Impedance Transformation Method for Finding

the Load Impedance of a Two~Port Network*
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Summary—An unknown load impedance terminating a 10SSYtwo-
port junction can be calculated if the input impedance and junction
parameters are known. It is to be shown that there exists a linear

relationship, dependent upon two calibration constants, between the

input reflection coefficient and a modified reflection coefficient of
the load. Applying the linear transformation to the junction input
impedance permits evaluation of the unknown load impedance. Cali-

bration is accomplished by terminating the transmission lime in at

least three cliff erent reactance and measuring the corresponding

input reflection coefficients. These data plot into tbe usual circular

configuration on a Smith chart from which the necessary calibration

data is obtained. When several load reactance are used, the calibra-

tion accuracy can be considerably increased, since the averaging ad-
Va]tltage of plotting a mean straight line is utilized. Furthermore,

once the junction has been calibrated, its equivalent T-network im-
pedances and scattering coefficients may be found.

NA
I. INTRODUCTION

UNKNOWN load impedance which terminates a

two-port junction can be calculated if the input

impedance and parameters of the junction are
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known. Several methods are currently available for de-

ter-mining the network parameters, such as the three-

point method, canonical method, and the scattering-

matrix met hod.l ’10
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This paper describes a procedure for finding the load

impedance based on a graphical method (as are most

other calibration procedures), but it avoids cumber-

some complex number manipulations, the restriction

that the junction be Iossless, and large probable calibra-

tion error caused by insufficient data. When it is prop-

erly applied, it provides a means of evaluating load im-

pedances directly, rapidly, and accurately.

It is to be shown that for a two-port junction there

exists a linear relationship between the input reflec-

tion coefficient I’in and a modified load reflection-

coefficient I’L’ (yet to be defined). This relationship

contains two calibration constants which are deter-

mined by means of a graphical calibration procedure;

then applying this linear relationship to the network

input impedance measurement permits evaluating the

load impedance. The theory of this technique is de-

scribed in the following.

II. GENERAL THEORY1l

The reciprocal, passive, two-port junction can be

represented by the T-configuration of Fig. 1. With a

load ZL connected, the input impedance seen by a

generator at port 1 is the usual

(1)

Observe that (2) can be rearranged as

[

– 2Z122ZOI

Zll – Zol Zll – Zol Z112 – Z012 1
I’i~ – —

Z*I + Z(M
—[. (3)

Zll + Zol

1

z&
Z22 – + z.

Zll + Zol 1

The quantity Z22 –Z1Z2/(Zll+ZOJ in the denominator of

(3), from comparison with (1), is the impedance look-

ing into port 2 when the generator at port 1 is replaced

by the matched load Zrrl. This quantity is a fixed con-

stant which, after normalization by ZOZ, we designate

as13

1

(

ZIZ2
zl=—z22—

Z02 )
= YI + jxl.

Zll + Zol
(4)

These parameters v1, *I will appear later as the “cali-

bration constants” mentioned before. Now define a nor-

malized load impedance ZL ‘zL/zoz = ?’L+~XL so that

substitution of Z1 and ZL into (3) and normalizing all

the remaining terms by ZO1 yields

– 22122

211 — 1 211 — 1

[1

(2,,2 – 1)7,
I’i. =-=— (5)

211 + 1 211 + 1
7

XL + xl
l+:+j

rl 71

~ loaded section of line

+ I z,, -Z12 3 4

,j [r )
I

J (~)
— (ZOJ z,” ‘:
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(Z02)

) ‘>

I (
+ ~ ~ T

Fig. l—Notation pertaining to a reciprocal, passive,
two-port junction.

From the definition of reflection coefficient, one may

express an input 17in for the T-network as12

V, --l
/21!2”

22, + ZL –
Z,n – Zflr Zll —Zol Zll – Z(I1

rin =
21. + 201 – 211 + ZO1

1
2122 “

z,, + ZL –
Zll + Zol 1

(2)

u The general theory has been discussed by R. Mittra, ‘~lrnped-
ance measurements through a discontinuity in a transmission line, ”
1955 IRE NATrO~~L fhWENTrON RECORD, vol. 3, pt. 8, pp. 85–91.
See also “Impedance and Pattern Studies of Dislc-Based Monopoles
over Lossy Ground Surfaces, ” Dept. of Elec. Engrg., Univ. of Colo-
rado, Boulder, Scientific Rept. hTo. ERD-TN-60-763, AF Res. Div.
Contract No. .4F 19(604)-4556, pp. 57-78: July, 1960.

122., and 202 denote the characteristic impedances of the trans-

mission lines connected to the input r: ference plane 1-2 and output
reference plane 3-4 respectively as in Fig. 1.

where .zI1= Z1l/Zol and Z12Z= Z122/Zo1Z02. One should

note that we have normalized the input impedance to

the characteristic impedance of the input port ZU, while

the load impedance ZL is normalized to the character-

istic impedance of the output port ZOZ.

Now simplify by making the substitutions

‘?L XL + 21

~L’=— J .tL’ = zL’ = ?’L1 + jXL1.
‘rl rl

Observe that we have defined a modified load

pedance zL’ which is related to the actual load

(6)

im-

im-

pedance zL through parameters rl, xl. Correspondingly,

define a “modified” load reflection coefficient T L’ related

13All normalized quantities appear in lower case IetterS.
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to ZL’ in the usual mray:

2.L’ — 1
FL’=—.

ZL’ + 1
(7)

Finally, substituting (7) into (5) and letti~lg

~11 –1
—=8
Zll+l

and

:;[(211::’:).1 = ‘1 ‘8)

where ti and 6 are complex network constants, puts (5)

in the form

I’i. – d = 3(1 – I’~’). (9)

Eq. (9) is a linear relationship between I’in and the

output transformed reflection coefficient r ~’. The entire

procedure for network-load impedance determination is

based upon this relationship, and is described in the

next sections.

,k

sliding short which connects directly onto the output

port. Assuming no losses in the shorted line, we have

that this load reactance is the normalized ZL =j tan kd,

where d is the shorted transmission line length. An ac-

tual plot of the rin-circle can then be made by means

of a suitable impedance meter placed ahead of the net-

work input terminals. In this manner, the circle typified

in Fig. 2(a) is plotted point-for-point as the known

load-reactance values are changed, with the center of

the circle located at .4.

The corresponding modified load reflection coef-

ficient ~.’ on the other hand will obviously plot on the

periphery of the r L’ plane [shown by circle D’E’B’ in

Fig. 2(b) ], since from relation (6), the modified load

L%SbJICe ~L’ = ?’.L/?’l k zero when the load k purely re-

active. From the properties of a linear transformationlA

and from the known input impedance measurements, a

point-to-point correspondence of the two circular loci

of I’in and rL’ is established experimentally. Hence, dis-

tance .4 ‘D’ (to point +1) in Fig. 2(b) corresponds to a

reactance termination provided by a quarter-wave

F’(x =1)

mB’62@~0)t-’’
Fig. 2–-TypicaI linear transformation of points in rin

and rLz planes. (a) 1’,. plane. (b) r~, plane.

111. PRINCIPLES OF NETWORK CALIBRATION

We shall now demonstrate how the c(esired calibra-

tion measurements are made on the network, and how

the unknown load impedance is then found. This

straightforward procedure is based on ths linearity of

(9) and on the load impedance transformation rela-

tions (6). Some of the well-known properties of the

Smith chart are repeated here in connection with the

specific measurements involved in this procedure.

Suppose we consider two separate Smith charts on

which are plotted the two reflection coeflcients, I’,. of

(2) and I’L’ of (7), which correspond to a given termi-

nated junction. These are shown t!~pical Iy in Fig. 2.

Fig. 2(a) represents the usual circular variation’” of

I’in (shown by circle DEB) obtainable when the output

terminals are loa,decl with at least three values of react-

ance. These load reactance can be provided physically

throLlgh the use of a uniform transmission line with a

shorted line for which xL’ = oc from (6), since XL = ~,

and so rL’ = +1. Then input-impedance measurements

will provide a corresponding point D in the rin-plane;

this establishes distance OD in Fig. 2(a). The proce-

dure is repeated with other load-reactance valL1es to

obtain other point-pairs and establish the circular loci

of Fig. 2(a) with as much detail as may be desired. For

every rL’ on the periphery of the I’L’-circle, there

corresponds a certain XL’ and hence an XL from (6).

Thus, rL’ is related to XL through the still unknown

calibration constants rl and xl. These m-e easily found

by first establishing two independent equations in-

volving unknowns VI and xl; e.g., refer to the expression

for %L’ in (6) again, and denote by the symbols x.,’ and

XL1’ as those .KL’-valLles which correspond to load re-

11The porpertie~ of linear transformation are Well kI1own. It is an

expansion and rotation followed by a translation. These operations
leave all angles and ratios of distances invariant. See Appendix I for
proof.
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actances of XL= O and XL= 1, respectively. Then (6) The cotangent method may be developed with ref-

yields erence to Fig. 3. Let 3-4 represent the output port

plane, while 1-2 represents the position of the input

xl 1+%1 standing-wave voltage minimum when the output is

XLO’ = — and xL1’ = —.
(10) shorted at 3-4. Now connect a quarter-wavelength

71 ~1
line extension to 3-4 so that the short is then located at

3’-4’, and such that the input voltage minimum has

Note that these two choices correspond! to a short cir- shifted toward the load to 1’-2’. Let all be the standing

cuit placed first at the output port, and then moved one- wave shift from 1’-2’ meas[lred positive toward the

eighth wavelength from the output. The input reflec- generator.

mmimum position

Mveye JI’::?L:,
~+::;ce

Y 1’ Ios$y 3 3’

g 2’ junction
4

‘~$;”

Fig. 3—Location of references and measurement of
distances used in the cotangent method.

tion coefficients ri. are then measured with these reac-

tive loads in place, and plot typically as B and E in

Fig. 2(a). Transformation to B’ and E’ in the rL’ plane

follows from the linearity property. This permits the

desired values of ~L~’ and x~l’ to be read and inserted

into (10) to yield the required xl, rl values, completing

the network calibration.

Suppose some unknown load impedance 2L is now

connected to the junction, and an impedance meter is

used to measure the input port reflection coefficient

I’i. which appears as point C in Fig. 2(a). This point

maps into the ~L’ plane as point C’ in Fig. 2(b) (found

from the equality of anles C.4 D and C’.I’D’ and from

equal magnifications C.4 /DA and C’.4 ‘/D’A”). But

point C’ a.!so identifies an impedance z~’ (corresponding

to that r~’); finally, ~L is found from this ZL’ by

means of (6) and by use of the known 71, .X1 values cfe-

termined from the method already described.

IV. THEORY OF THE COTANGENT NIETIIOD

FOR NETIVORK C.\ LIBR.\TION

The calibration method for finding ~1, .YI of a network

as described in Section I I I involves at least three meas-

urements of input impedal~ ce (or reflection coefficient)

and corresponding measurements of lengths d of shorted

transmission lines, which may offer contributions to

errors in the evaluation of ~1 and xl. It is now to be

shown that one of the greatest advantages of the im-

pedance transformation method is that significant

errors may be minimized through a plot of ~L’ vs XL,

which is seen to be a straight line from (6). With the

output consecutively terminated in a sufficient number

of shorted transmission-line sections, a mean straight

line drawn through the experimental points serves to

eliminate the largest errors which are likely to occur.

We shall now elaborate on this technique.

Recall that when the short is placed at 3’-4,

.~L’ = (~L+%I)/~1 = ~ and the corresponding input re-

flection coeficie~t establishes point D on the I’in plane

of Fig. 2(a). NTOW vary distance d~ measured from

3’-4’ by connecting several shorted transmission lines

successively to 3-4, such that —h/4 <dz <h/4. The cor-

responding I’i. is measured for each d~ so that the cir-

cular I’i. plot of Fig. 2(a) may be obtained.

Now from the discussion of Section III, any angle

EAD in the I’i. plane transforms into angle E’.4’D’ in

the rL’ plane of Fig. 2 (b). Let us define an equivalent

distance d,’ (Fig. 2) such that angle EAD = 2 kdI’. The

rL’ plane reference is taken at rL’ = +1, so XL’= cot

kdl’ and XL= cot kd~.Substit~ting XL’ and XI, into (6)

yields

cot kdl’ = ~ cot kd~+ z . (11)
‘1’1 ?’1

The desired calibration constants rl, xl can evidently

be found from (11) by noting that the slope of the line is

1,/~1 while the ordinate intercept is –xl. We note in

passing that when the junction is Iossless, then dl’ = dl,
equation (11) becomes the same as that which was pro-

posed b]- Oliverg for lossless structures.

A sample plot of data and calibration curve for a

typical coaxial line junction is shown in Figs. 4 and 5. A

sample input impedance measurement was plotted as

point F on Fig. 4. The radius of the I’i. circle is 0.908,

the angle F.4D measures 60.8°, and line .4 F has a length

of 0.368, SO

——
AIFI . ~ —

— A’D’ = 0.394 e’60 8°.
.4 D

The modified load impedanre is read out as ZL’ = 1.10

+jO.90 and, by applying (6), we find ~L = 0.844 and

cc~=O.316.
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Fig. .5-

z

-An illustration showing method of determining calibration
constants r] and X1 with the cotangent method.
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~. GENERAL DISCI~SSION OF CALIBRATION PROCEDURE

The measurement procedure described involves meas-

urement of the input reflection coefficient for various

values of output terminating reactace obtainable by

terminating the port 3-4 with a transmission line

equipped with a sliding short. The input reflection

coefficient can usually be measured with a slotted line;

however, other methods may be employed depending

upon the accuracy desired, the nature of the magnitude

of 17i., and the operating wavelength.

A minimum of three different terminating reactance

are needed to locate the circle in the I’i. plane. lf the

calibration constants are to be determined by (10),

these three reactance correspond to short-circuited

line lengths dz of zero, A /8 and A /4 (or terminating

impedances of jO, ~1 and j ~), respectively. Of co~u-se,

more points would provide more accuracy for deter-

mining the center of the rin circle. If the cotangent

method of evaluating the calibration constants is to be

used, then several points should be obtained so that a

mean straight line can be drawn.

After collecting enough data to plot the I’,. circle to

the desired accuracy, one can then locate its center .4,

shown typically in Fig. 2(a). The distance A D corre-

sponds to A’D’ in the rI,’ plane, and any rL’ may then

be determined b~: the relations

Ac _ A’(?
— and angle CAD = angle C’A’D’.

.4D – /i ’D’

lt should be mentioned at this point that if the z matrix

is positive yealj~5 J7,. will always lie within the circle DED
and the junction will be passive.

APPENDIX I

PROOF OF LINE.IR TRANSFORMATION BETWEEN rin

AND I’ L’ PLANES

The complex constants defined by (8) are easily

representable as vectors which are shown in Fig. 6.

From (9), when I’L’ =. +1, I’i. = a and when I’~’=0,

ri. = i.+h so ~ equals vector OD and h equals vector
——

.—
DA.

The linear transformation property may be seen by

letting rL’ take on any value such that rin takes on a

corresponding value, say vector @. Eq. (9) may be

rearranged to read (C+ 6) — r,.= br L’. It follows then

that vector ~~= brh’, and A maps into A’ by merely

letting rL’ = O. Also, taking a ratio of the two vectors

br L’ and 6 yields

6rL’ FA—_ = = rL’.
6–DA

(12)

(a) (b)

Fig. 6—Fi~ plane showing complex constants a
and b. (a) I’in plane. (b) rL1 plane.

Thus, the angle FAD = 2kdl= angle F’.4’D’ and the

magnitude of r L’ is found through equal magnification

of the radii

FAI—l=lq
AD AID, “ (13)

The validity of the proposed point-for-point trans-

formation is thereby established.

APPENDIX 11

TR~N SFORMATION lPIETHOD RELATIONSHIP TO NETWORK

IMPEDANCES AND SCATTERING COEFFICIENTS

It may be convenient to use the transformation pro-

cedure outlined in the text to determine the impedance

constants of the T-network shown in Fig. 1 or the com-

monly used scattering coefficients, both of which com-

pletel y describe the junction. These are easily found

through the use of the constants ~ and ~ defined by

(8) and the calibration constant z,= r, +jxl (see Ap-

pendix 1).

.4. Evaluation of the Netwo~k Impedance

Using the first of (8) it is apparent that

Zll l+li
zll. —=—

201 l–a”

The complex constant 6 may be written as

(14)

After eliminating Zl,’/(Zll +ZOJ from (4)

substituting (14) we find .

Z22 26?’1
z22=—=z~— —

ZI).2 l–a”

15The necessary and sufficient condition fOr pOSitiVe realitY is that

RllRpj –R,Z >0 where R,l, RZ*, and RU are the real parts of 21,, Zzz, and
and 2:2, respectively. See E. A. Guillemin, “Communication NTet-
works, “ John W’iley and Sons, Inc., New York, N. Y., vol. 2, p. 216;
10Z<

Finally, Zlz may be found by substituting

into (4) yielding

Zl?? – 4iw,

(15)

with (15) and

(16)

(14) and (16)

(17)
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B. Evaluation of the Scattering Coejicients the network, or

The scattering coefficients are often needed to de- S#TL

scribe the characteristics of a network. For our discus- I’i. = SII + (20)

sion we shall assume that the j unct ion is reciprocal as
1 – s22rL

before, i.e., Slz = SZI. Letting rL ==O, we see that

To find the forward reflection coefficient S1l we note
2bYl

that when r~ = O, then rL = 1 and .~L = 0. Then, from S,, =a+—. (21)

(6) and (7) , 21+1

zz/’ — 1 1 – ?’~ + j,vl It follows from (4) and the above discussion that

rL’ . — – ——– (18)
zL’+l– 1 + 71 + j%l 21—1

S22=—. (22)

21* — 1
21+1

—_—— 9
21+1

The transmission coefficient Sal may be found by

observing that when rL = + 1 then I’~’ = + 1 and

}vhere Z1* denotes the complex conjugate of Z1. Sub- ri. = G or

stituting (18) into (9) and rearranging, ww obtain S122
I’in = SH + .

26?’1 1 – S22

r,n=a+— >’ (19)
21+1 Substituting (21) and (22) into (23) yields

(23)

but recall that the input reflection coet%cient may also
– 45?’1

SJ = —— (24)

be expressed in terms of the scattering coefficients of (z, + 1)’ -


